How do you differentiate (cos x) / (1-sinx)?

1 Answer
Jun 13, 2016

Quotient Rule:-

If u and v are two differentiable functions at x with v!=0, then y=u/v is differentiable at x and

dy/dx=(v*du-u*dv)/v^2

Let y=(cosx)/(1-sinx)

Differentiate w.r.t. 'x' using quotient rule

implies dy/dx=((1-sinx)d/dx(cosx)-cosxd/dx(1-sinx))/(1-sinx)^2

Since d/dx(cosx)=-sinx and d/dx(1-sinx)=-cosx

Therefore dy/dx=((1-sinx)(-sinx)-cosx(-cosx))/(1-sinx)^2

implies dy/dx=(-sinx+sin^2x+cos^2x)/(1-sinx)^2

Since Sin^2x+Cos^2x=1

Therefore dy/dx=(1-sinx)/(1-sinx)^2=1/(1-Sinx)

Hence, derivative of the given expression is 1/(1-sinx).