Quotient Rule:-
If u and v are two differentiable functions at x with v!=0, then y=u/v is differentiable at x and
dy/dx=(v*du-u*dv)/v^2
Let y=(cosx)/(1-sinx)
Differentiate w.r.t. 'x' using quotient rule
implies dy/dx=((1-sinx)d/dx(cosx)-cosxd/dx(1-sinx))/(1-sinx)^2
Since d/dx(cosx)=-sinx and d/dx(1-sinx)=-cosx
Therefore dy/dx=((1-sinx)(-sinx)-cosx(-cosx))/(1-sinx)^2
implies dy/dx=(-sinx+sin^2x+cos^2x)/(1-sinx)^2
Since Sin^2x+Cos^2x=1
Therefore dy/dx=(1-sinx)/(1-sinx)^2=1/(1-Sinx)
Hence, derivative of the given expression is 1/(1-sinx).