3+2i=sqrt(3^2+2^2)e^{i phi}3+2i=√32+22eiϕ
-2+3i=sqrt(3^2+2^2)e^{i( phi+pi/2)}−2+3i=√32+22ei(ϕ+π2)
with phi = arctan(2/3)ϕ=arctan(23)
[(3+2i)^ 3 / (-2+3i)^4] =((3+2i)/(-2+3i))^3/( (-2+3i))=e^{-i (3pi)/2}/(sqrt(3^2+2^2)e^{i( phi+pi/2)})[(3+2i)3(−2+3i)4]=(3+2i−2+3i)3(−2+3i)=e−i3π2√32+22ei(ϕ+π2)
=1/sqrt(3^2+2^2)e^{-i(phi+2pi)} = 1/sqrt(3^2+2^2)e^{-i phi} ==1√32+22e−i(ϕ+2π)=1√32+22e−iϕ=
sqrt(3^2+2^2)/(3^2+2^2)e^{-i phi} = (3-2i)/13√32+2232+22e−iϕ=3−2i13