How do you find the definite integral for: e^sin(x) * cos(x) dx for the intervals [0, pi/4]?

1 Answer
Jun 27, 2016

Use a u-substitution to get int_0^(pi/4) e^sinx*cosxdx=e^(sqrt(2)/2)-1.

Explanation:

We'll begin by solving the indefinite integral and then deal with the bounds.

In inte^sinx*cosxdx, we have sinx and its derivative, cosx. Therefore we can use a u-substitution.

Let u=sinx->(du)/dx=cosx->du=cosxdx. Making the substitution, we have:
inte^udu
=e^u

Finally, back substitute u=sinx to get the final result:
e^sinx

Now we can evaluate this from 0 to pi/4:
[e^sinx]_0^(pi/4)
=(e^sin(pi/4)-e^0)
=e^(sqrt(2)/2)-1
~~1.028