What is f(x) = int xe^(2-x) + 3x^2 dxf(x)=xe2x+3x2dx if f(0 ) = 1 f(0)=1?

1 Answer
Jul 7, 2016

-xe^(2-x)-e^(2-x)+x^3+1+e^2xe2xe2x+x3+1+e2

Explanation:

Begin by using the sum rule for integrals and splitting these into two separate integrals:
intxe^(2-x)dx+int3x^2dxxe2xdx+3x2dx

The first of these mini-integrals is solved using integration by parts:
Let u=x->(du)/dx=1->du=dxu=xdudx=1du=dx
dv=e^(2-x)dx->intdv=inte^(2-x)dx->v=-e^(2-x)dv=e2xdxdv=e2xdxv=e2x

Now using the integration by parts formula intudv=uv-intvduudv=uvvdu, we have:
intxe^(2-x)dx=(x)(-e^(2-x))-int(-e^(2-x))dxxe2xdx=(x)(e2x)(e2x)dx
=-xe^(2-x)+inte^(2-x)dx=xe2x+e2xdx
=-xe^(2-x)-e^(2-x)=xe2xe2x

The second of these is a case of the reverse power rule, which states:
intx^ndx=(x^(n+1))/(n+1)xndx=xn+1n+1

So int3x^2dx=3((x^(2+1))/(2+1))=3(x^3/3)=x^33x2dx=3(x2+12+1)=3(x33)=x3

Therefore, intxe^(2-x)+3x^2dx=-xe^(2-x)-e^(2-x)+x^3+Cxe2x+3x2dx=xe2xe2x+x3+C (remember to add the constant of integration!)

We are given the initial condition f(0)=1f(0)=1, so:
1=-(0)e^(2-(0))-e^(2-(0))+(0)^3+C1=(0)e2(0)e2(0)+(0)3+C
1=-e^2+C1=e2+C
C=1+e^2C=1+e2

Making this final substitution, we obtain our final solution:
intxe^(2-x)+3x^2dx=-xe^(2-x)-e^(2-x)+x^3+1+e^2xe2x+3x2dx=xe2xe2x+x3+1+e2