This differential equation is separable.
#dy/(dx) = 10-2y#
#dy = (10-2y) dx#
# 1/(10-2y) dy = dx#
#int dy/(10-2y) = int dx#
Let #u = 10-2y -> du = -2 dy -> -1/2 du = dy#
#-1/2 int (du)/(u) = int x dx#
#-1/2 ln(10-2y) = x + C#
#ln(10-2y) = -2(x+C)#
#10-2y = e^(-2(x+C))#
#-2y+10 = e^(-2(x+C))#
#-2y = e^(-2(x+C)) - 10#
#color(red)(-2y = e^(-2x)e^(-2C) - 10)#
#color(red)(-2y = C e^(-2x) - 10)#
#color(red)(y = C/(-2) e^(-2x) - 10/(-2))#
#color(red)(y = C e^(-2x) +5)#
#y = - (e^(-2(x+C)) -10)/(2)#
#y = (e^(-2(x+C)) + 10)/(2)#