z = 1 - iz=1−i will be in 4th quadrant of argand diagram. Important to note for when we find the argument.
r = sqrt(1^2 + (-1)^2) = sqrt(2)r=√12+(−1)2=√2
theta = 2pi - tan^(-1)(1) = (7pi)/4 = -pi/4θ=2π−tan−1(1)=7π4=−π4
z = r(costheta + isintheta)z=r(cosθ+isinθ)
z^n = r^n(cosntheta + isinntheta)zn=rn(cosnθ+isinnθ)
z^12 = (sqrt(2))^12(cos(-12pi/4) + isin(-12pi/4))z12=(√2)12(cos(−12π4)+isin(−12π4))
z^12 = 2^(1/2*12)(cos(-3pi) + isin(-3pi))z12=212⋅12(cos(−3π)+isin(−3π))
z^12 = 2^6(cos(3pi) - isin(3pi))z12=26(cos(3π)−isin(3π))
cos(3pi) = cos(pi) = -1cos(3π)=cos(π)=−1
sin(3pi) = sin(pi) = 0sin(3π)=sin(π)=0
z^12 = -2^6 = -64z12=−26=−64