How do you use demoivre's theorem to simplify (1-i)^12(1i)12?

1 Answer
Aug 13, 2016

-6464

Explanation:

z = 1 - iz=1i will be in 4th quadrant of argand diagram. Important to note for when we find the argument.

r = sqrt(1^2 + (-1)^2) = sqrt(2)r=12+(1)2=2

theta = 2pi - tan^(-1)(1) = (7pi)/4 = -pi/4θ=2πtan1(1)=7π4=π4

z = r(costheta + isintheta)z=r(cosθ+isinθ)

z^n = r^n(cosntheta + isinntheta)zn=rn(cosnθ+isinnθ)

z^12 = (sqrt(2))^12(cos(-12pi/4) + isin(-12pi/4))z12=(2)12(cos(12π4)+isin(12π4))

z^12 = 2^(1/2*12)(cos(-3pi) + isin(-3pi))z12=21212(cos(3π)+isin(3π))

z^12 = 2^6(cos(3pi) - isin(3pi))z12=26(cos(3π)isin(3π))

cos(3pi) = cos(pi) = -1cos(3π)=cos(π)=1

sin(3pi) = sin(pi) = 0sin(3π)=sin(π)=0

z^12 = -2^6 = -64z12=26=64