How do you use the quotien rule to differentiate (3x^2+4) / sqrt(1+x^2)3x2+41+x2?

1 Answer
Oct 21, 2016

f'(x)=(6xsqrt(1+x^2)-((3x^3+4x)/sqrt(1+x^2)))/(1+x^2)f'(x)=6x1+x2(3x3+4x1+x2)1+x2

Explanation:

Quotient Rule

f'(x)=(vu'-uv')/v^2f'(x)=vu'uv'v2

u=3x^2+4u=3x2+4

u'=6xu'=6x

v=sqrt(1+x^2)=(1+x^2)^(1/2)v=1+x2=(1+x2)12

v'=(1/cancel2)(1+x^2)^(-1/2)*cancel2x=x/sqrt(1+x^2)v'=(12)(1+x2)122x=x1+x2

f'(x)=((1+x^2)^(1/2)*6x-(3x^2+4)(x/sqrt(1+x^2)))/((1+x^2)^(1/2))^2f'(x)=(1+x2)126x(3x2+4)(x1+x2)((1+x2)12)2

Simplify

f'(x)=(6xsqrt(1+x^2)-((x(3x^2+4))/sqrt(1+x^2)))/(1+x^2)f'(x)=6x1+x2(x(3x2+4)1+x2)1+x2

f'(x)=(6xsqrt(1+x^2)-((3x^3+4x)/sqrt(1+x^2)))/(1+x^2)f'(x)=6x1+x2(3x3+4x1+x2)1+x2

Common Denominator

f'(x)=(6xsqrt(1+x^2)*((sqrt(1+x^2))/(sqrt(1+x^2)))-((3x^3+4x)/sqrt(1+x^2)))/(1+x^2)f'(x)=6x1+x2(1+x21+x2)(3x3+4x1+x2)1+x2

Simplify

f'(x)=(((6x(1+x^2))/(sqrt(1+x^2)))-((3x^3+4x)/sqrt(1+x^2)))/(1+x^2)f'(x)=(6x(1+x2)1+x2)(3x3+4x1+x2)1+x2

Distribute

f'(x)=((6x+6x^3)/(sqrt(1+x^2))-((3x^3+4x)/sqrt(1+x^2)))/(1+x^2)f'(x)=6x+6x31+x2(3x3+4x1+x2)1+x2

Numerator simplified

f'(x)=((6x+6x^3-3x^3-4x)/sqrt(1+x^2))/(1+x^2)f'(x)=6x+6x33x34x1+x21+x2

f'(x)=((2x+3x^3)/sqrt(1+x^2))/(1+x^2)f'(x)=2x+3x31+x21+x2

Multiply by the reciprocal

f'(x)=(2x+3x^3)/sqrt(1+x^2)*1/(1+x^2)f'(x)=2x+3x31+x211+x2

f'(x)=(2x+3x^3)/(sqrt(1+x^2)*(1+x^2))f'(x)=2x+3x31+x2(1+x2)

Simplify

f'(x)=(2x+3x^3)/((1+x^2)^(1/2)*(1+x^2)^(2/2))f'(x)=2x+3x3(1+x2)12(1+x2)22

Simplify the denominator

f'(x)=(2x+3x^3)/((1+x^2)^(3/2))f'(x)=2x+3x3(1+x2)32

Factor out an x from the numerator

f'(x)=(x(2+3x^2))/((1+x^2)^(3/2))f'(x)=x(2+3x2)(1+x2)32

Watch these examples of the quotient rule.