How do you differentiate y=(5-2x+3x^2)/(x^2+3)y=52x+3x2x2+3?

1 Answer
Nov 6, 2016

\frac{dy}{dx}=\frac{2(x^2+4x-3)}{(x^2+3)^2}dydx=2(x2+4x3)(x2+3)2

Explanation:

The quotient rule says:
if y=\frac{a}{b}y=ab then \frac{dy}{dx}=\frac{b\cdot\frac{d}{dx}[a]-a\cdot\frac{d}{dx}[b]}{b^2}dydx=bddx[a]addx[b]b2
so
\frac{dy}{dx}=\frac{(x^2+3)\cdot\frac{d}{dx}(5-2x+3x^2)-(5-2x+3x^2)\cdot\frac{d}{dx}(x^2+3)}{(x^2+3)^2}dydx=(x2+3)ddx(52x+3x2)(52x+3x2)ddx(x2+3)(x2+3)2
calculate the derivatives
\frac{dy}{dx}=\frac{(x^2+3)(6x-2)-(5-2x+3x^2)(2x)}{(x^2+3)^2}dydx=(x2+3)(6x2)(52x+3x2)(2x)(x2+3)2
expand
\frac{dy}{dx}=\frac{(6x^3+18x-2x^2-6)-(10x-4x^2+6x^3)}{(x^2+3)^2}dydx=(6x3+18x2x26)(10x4x2+6x3)(x2+3)2

more expanding
\frac{dy}{dx}=\frac{6x^3+18x-2x^2-6-10x+4x^2-6x^3}{(x^2+3)^2}dydx=6x3+18x2x2610x+4x26x3(x2+3)2

group like terms
\frac{dy}{dx}=\frac{6x^3-6x^3+18x-10x-2x^2+4x^2-6}{(x^2+3)^2}dydx=6x36x3+18x10x2x2+4x26(x2+3)2

simplify
\frac{dy}{dx}=\frac{8x+2x^2-6}{(x^2+3)^2}dydx=8x+2x26(x2+3)2

\frac{dy}{dx}=\frac{2(x^2+4x-3)}{(x^2+3)^2}dydx=2(x2+4x3)(x2+3)2