#y=(x+12)^2-144#
To find the #y# intercept, substitute #x=0# into the equation and solve for #y#.
#y=(0+12)^2-144#
#y=12^2-144#
#y=144-144#
#y=0#
The #y# intercept is the origin #(0,0)#.
It is also one of the #x# intercepts because #y=0# at this point.
To find the other #x# intercept, substitute #y=0# into the equation and solve for #x#.
#color(white)(aaa)0=(x+12)^2-144#
#+144=color(white)(aaaaaaa)+144color(white)(aaa)#Add 144 to both sides.
#144=(x+12)^2#
#sqrt144=sqrt[(x+12)^2]color(white)(aaa)#Square root both sides
#+-12=x+12#
#color(white)(a^2)12=x+12color(white)(aaa)-12=x+12#
#-12=color(white)(a)-12color(white)(aaa)-12=color(white)a-12#
#x=0color(white)(aaaaa)x=-24#
The #x# intercepts are #(-24,0)# and #(0,0)#.