How do you find the inverse of #y=x^2+12x#?
1 Answer
Explanation:
The general steps to finding the inverse of a function are:
#1# . Replace#f(x)# with#y# if it hasn't been done so already.
#2# . Swap#x# and#y# .
#3# . Solve for#y# .
#4# . Replace#y# with#f^-1(x)# .
Using these four steps, let us find the inverse of
Starting with,
#y=x^2+12x#
Notice how
#y=x^2+12x+(12/2)^2-(12/2)^2#
#y=(x+6)^2-(12/2)^2#
#y=(x+6)^2-36#
Since the function is already denoted by the variable
#x=(y+6)^2-36#
Solving for
#x+36=(y+6)^2#
#+-sqrt(x+36)=y+6#
#y=+-sqrt(x+36)-6#
Replacing
#color(green)( bar (ul ( | color(white)(a/a) color(black)(f^-1(x)=+-sqrt(x+36)-6) color(white)(a/a) | )))#