How do you find the inverse of y=x^2+12xy=x2+12x?
1 Answer
Explanation:
The general steps to finding the inverse of a function are:
11 . Replacef(x)f(x) withyy if it hasn't been done so already.
22 . Swapxx andyy .
33 . Solve foryy .
44 . Replaceyy withf^-1(x)f−1(x) .
Using these four steps, let us find the inverse of
Starting with,
y=x^2+12xy=x2+12x
Notice how
y=x^2+12x+(12/2)^2-(12/2)^2y=x2+12x+(122)2−(122)2
y=(x+6)^2-(12/2)^2y=(x+6)2−(122)2
y=(x+6)^2-36y=(x+6)2−36
Since the function is already denoted by the variable
x=(y+6)^2-36x=(y+6)2−36
Solving for
x+36=(y+6)^2x+36=(y+6)2
+-sqrt(x+36)=y+6±√x+36=y+6
y=+-sqrt(x+36)-6y=±√x+36−6
Replacing
color(green)( bar (ul ( | color(white)(a/a) color(black)(f^-1(x)=+-sqrt(x+36)-6) color(white)(a/a) | )))