If sum_(n=2) ^oo (1+k)^-n=2n=2(1+k)n=2 what is kk?

The answer is supposed to be k=(sqrt3-1)/2k=312 I just don't know how to get there.

1 Answer
Dec 14, 2016

k=(sqrt(3)-1)/2k=312

Explanation:

A geometric series of the form sum_(n=0)^oor^nn=0rn with |r|<1|r|<1 evaluates to

sum_(n=0)^oor^n = 1/(1-r)n=0rn=11r

With that,

sum_(n=2)^oo(1+k)^(-n) = sum_(n=2)^oo(1/(1+k))^nn=2(1+k)n=n=2(11+k)n

=-(1/(1+k))^0-(1/(1+k))^1+sum_(n=0)^oo(1/(1+k))^n=(11+k)0(11+k)1+n=0(11+k)n

=-1-1/(1+k)+1/(1-(1/(1+k)))=111+k+11(11+k)

=-1-1/(1+k)+1/(k/(1+k))=111+k+1k1+k

=-1-1/(1+k)+(1+k)/k=111+k+1+kk

=2=2

We can now solve for kk. Multiplying through by k(1+k)k(1+k), we get

-k(1+k) - k + (1+k)^2 = 2k(1+k)k(1+k)k+(1+k)2=2k(1+k)

=> -k-k^2-k+1+2k+k^2 = 2k^2+2kkk2k+1+2k+k2=2k2+2k

=> 1 = 2k^2+2k1=2k2+2k

=> 2k^2+2k-1 = 02k2+2k1=0

=> k = (-1+-sqrt(3))/2k=1±32

But we must have k>0 or k<-2k>0ork<2 for lim_(n->oo)(1+k)^(-n)=0, a necessary condition for convergence, thus our only possibility becomes the positive option:

k=(sqrt(3)-1)/2