Question #d2448

4 Answers
Feb 8, 2017

#=- 1/2 1/(x^(3/2)) #

Explanation:

So you are here?

#lim_(h to 0) 1/h (1/sqrt(x+h)-1/sqrt(x))#

If so, you can now add the terms:

#=lim_(h to 0) 1/h ((sqrt x - sqrt (x+h)) /(sqrt x sqrt(x+h)))#

And here is the trick: multiply top and bottom of this resulting fraction by the conjugate of the numerator:

#=lim_(h to 0) 1/h (((sqrt x - sqrt (x+h)) * (sqrt x + sqrt (x+h))) /(sqrt x sqrt(x+h)(sqrt x + sqrt (x+h))))#

#=lim_(h to 0) 1/h ( x - (x+h) ) /(sqrt x sqrt(x+h)(sqrt x + sqrt (x+h))))#

#=lim_(h to 0) 1/h (( -h) /(sqrt x sqrt(x+h)(sqrt x + sqrt (x+h))))#

#=- lim_(h to 0) ((1) /(sqrt x sqrt(x+h)(sqrt x + sqrt (x+h))))#

#=- ((1) /(sqrt x sqrt(x)(sqrt x + sqrt (x))))#

#=- ((1) /( sqrt x * sqrt(x) * 2 sqrt x ))#

#=- 1/2 1/(x^(3/2)) #

Feb 8, 2017

Combine the quotients into a single quotient.

Explanation:

#1/sqrt(x+h) - 1/sqrtx = (sqrtx-sqrt(x+h))/(sqrtxsqrt(x+h))#

My guess (educated guess) is that your textbook/instructor lists the 3rd step as

Find #(f(x+h)-f(x))/h#.

If so, then our step 3 for this function is

#(f(x+h)-f(x))/h = ((sqrtx-sqrt(x+h))/(sqrtxsqrt(x+h)))/h#

# = ((sqrtx-sqrt(x+h))/(sqrtxsqrt(x+h)))/(h/1)#

# = ((sqrtx-sqrt(x+h))/(sqrtxsqrt(x+h))) * (1/h)#

# = (sqrtx-sqrt(x+h))/(hsqrtxsqrt(x+h))#

Now remove the radicals in the numerator ("rationalize the numerator")

# = ((sqrtx-sqrt(x+h)))/(hsqrtxsqrt(x+h)) * ((sqrtx+sqrt(x+h)))/((sqrtx+sqrt(x+h)))#

# = (x-(x+h))/(hsqrtxsqrt(x+h)(sqrtx+sqrt(x+h))#

# = (-h)/(hsqrtxsqrt(x+h)(sqrtx+sqrt(x+h))#

# = (-1)/(sqrtxsqrt(x+h)(sqrtx+sqrt(x+h))#

And Step 4 evaluate the limit as #hrarr0# -- sometimes described as "plug in #0# for #h#"

#lim_(hrarr0)(-1)/(sqrtxsqrt(x+h)(sqrtx+sqrt(x+h))) = (-1)/(sqrtxsqrt(x+0)(sqrtx+sqrt(x+0)))#

# = (-1)/(sqrtx sqrtx(2sqrtx))#

# = (-1)/(2sqrtx^3)#

Note

As you can see from the other answers, many treatments of calculus do not use a multi-step description of finding #lim_(hrarr0)(f(x+h)-f(x))/h#.

The other presentations all do the same steps, they just don't bother with separating the steps.

Feb 8, 2017

Sorry, I misunderstood your question.

Explanation:

Here is how you solve it using the limit definition:

#lim_(h->0) (f(x+h) - f(x))/h#

#lim_(h->0) (1/sqrt(x+h) - 1/sqrt(x))/h#

#lim_(h->0) 1/(sqrt(x+h)*h) - 1/(sqrt(x)*h)#

#lim_(h->0) sqrt(x)/(sqrt(x+h)*h*sqrt(x)) - sqrt(x+h)/(sqrt(x)*h*sqrt(x+h))#

#lim_(h->0) (sqrt(x)-sqrt(x+h))/(sqrt(x)*h*sqrt(x+h))#

#lim_(h->0) (x-(x+h))/ (sqrt(x)*h*sqrt(x+h)*(sqrt(x)+sqrt(x+h))#

#lim_(h->0) (-h)/ (sqrt(x)*h*sqrt(x+h)*(sqrt(x)+sqrt(x+h))#

#lim_(h->0) (-1)/ (sqrt(x)*sqrt(x+h)\*(sqrt(x)+sqrt(x+h))#

plug in h = 0 because it can now be evaluated

=#-1/2x^(-3/2)#

Feb 8, 2017

#g'(x)=-1/2x^(-3/2)#

Explanation:

It appears from what is written that you want to obtain the derivative from#color(blue)" limit definition"#

#color(red)(bar(ul(|color(white)(2/2)color(black)(f'(x)=lim_(hto0)(f(x+h)-f(x))/h)color(white)(2/2)|)))#
the aim of the exercise to eliminate h from the denominator.

#f(x)=1/sqrtx#

#rArrf'(x)=lim_(hto0)(1/sqrt(x+h)-1/sqrtx)/h#

At this stage, rationalise the numerator by multiplying numerator/denominator by the #color(blue)"conjugate"# of the numerator.

#rArrlim_(hto0)((1/sqrt(x+h)-1/sqrtx)(1/sqrt(x+h)color(red)(+)1/sqrtx))/(h(1/sqrt(x+h)color(red)(+)1/sqrtx)#

#=lim_(hto0)((1/(x+h)-1/x))/(h(1/sqrt(x+h)+1/sqrtx)#

#=lim_(hto0)(((x-x-h))/(x(x+h)))/(h(1/sqrt(x+h)+1/sqrtx)#

#=lim_(hto0)-cancel(h)^1/(x(x+h))xx1/(cancel(h)^1(1/sqrt(x+h)+1/sqrtx)#

#=(-1)/(x^2(1/sqrtx+1/sqrtx))=(-1)/(x^2(2/sqrtx)#

#=(-1)/((2x^2)/x^(1/2))=(-1)/(2x^(3/2))=-1/2x^(-3/2)#

#rArrg'(x)=-1/2x^(-3/2)larr" from first principles"#