How do you find the derivative of -ln(x-(x^2+1)^(1/2))ln(x(x2+1)12)?

1 Answer
Feb 12, 2017

The derivative of -ln(x - (x^2+1)^(1/2))ln(x(x2+1)12) with respect to x is 1/sqrt(x^2 +1).1x2+1. To solve this use the chain rule carefully. See the explanation for details.

Explanation:

Starting with:

d / dx (-ln(x - (x^2+1)^(1/2)))ddx(ln(x(x2+1)12))

use the chain rule to get:

d / dx (-ln(x - (x^2+1)^(1/2)))ddx(ln(x(x2+1)12))

= -1/(x-(x^2+1)^(1/2)) *d/dx (x - (x^2+1)^(1/2))=1x(x2+1)12ddx(x(x2+1)12)

use the chain rule once again on the remaining derivative:

= -1/(x-(x^2+1)^(1/2)) * (1 - 1/2(x^2+1)^(-1/2)(2x))=1x(x2+1)12(112(x2+1)12(2x))

Simplify:

= (x/(x^2+1)^(1/2) -1 )/(x-(x^2+1)^(1/2))=x(x2+1)121x(x2+1)12

Note that 1=(x^2+1)^(1/2) / (x^2+1)^(1/2)1=(x2+1)12(x2+1)12, then substitute this for 1:

= (x/(x^2+1)^(1/2) - (x^2+1)^(1/2) / (x^2+1)^(1/2) )/(x-(x^2+1)^(1/2))=x(x2+1)12(x2+1)12(x2+1)12x(x2+1)12

= ((x - (x^2+1)^(1/2)) / (x^2+1)^(1/2) )/(x-(x^2+1)^(1/2))=x(x2+1)12(x2+1)12x(x2+1)12

= ((x - (x^2+1)^(1/2)) / (x^2+1)^(1/2) ) divide (x-(x^2+1)^(1/2))=x(x2+1)12(x2+1)12÷(x(x2+1)12)

= ((x - (x^2+1)^(1/2)) / (x^2+1)^(1/2) ) * 1/(x-(x^2+1)^(1/2))=x(x2+1)12(x2+1)121x(x2+1)12

= (x - (x^2+1)^(1/2)) / (x-(x^2+1)^(1/2) ) * 1/((x^2+1)^(1/2))=x(x2+1)12x(x2+1)121(x2+1)12

= 1 * 1/((x^2+1)^(1/2)) =11(x2+1)12

= 1/((x^2+1)^(1/2)) = 1/sqrt((x^2+1)).=1(x2+1)12=1(x2+1).

Finally:

d / dx (-ln(x - (x^2+1)^(1/2))) = 1/sqrt((x^2+1)).ddx(ln(x(x2+1)12))=1(x2+1).

If you have any questions about the use of the chain rule or any other part of this solution, then please ask.

Rory.