How do you simplify (cos^2x-4)/(cosx-2)?

2 Answers
Mar 5, 2017

{cos^2 x - 4}/{cos x - 2} = cos x + 2

Explanation:

Just use the identity:

a^2 - b^2 = (a+b)(a-b).

Then, we have:

{cos^2 x - 4}/{cos x - 2} = {(cos x + 2) (cos x - 2)}/{cos x - 2} = cos x + 2

Mar 5, 2017

cosx+2

Explanation:

Factorise the numerator as a color(blue)"difference of squares"

color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(a^2-b^2=(a-b)(a+b))color(white)(2/2)|)))

"here "a=cosx" and "b=2

rArrcos^2x-4=(cosx-2)(cosx+2)

rArr((cancel(cosx-2))(cosx+2))/cancel(cosx-2)

=cosx+2