What is f(x) = int sec^2x- cosx dxf(x)=sec2xcosxdx if f((5pi)/4) = 0 f(5π4)=0?

1 Answer
Mar 5, 2017

f(x) = tanx-sinx+(2+sqrt2)/2f(x)=tanxsinx+2+22

Explanation:

intsec^2x - cosxdx = intsec^2xdx-intcosxdxsec2xcosxdx=sec2xdxcosxdx

These are known integrals:

d/dxtanx = sec^2x -> intsec^2xdx = tanxddxtanx=sec2xsec2xdx=tanx

d/dxsinx = cosx -> intcosxdx = sinxddxsinx=cosxcosxdx=sinx

therefore,

intsec^2x-cosxdx = tanx - sinx + C = f(x)sec2xcosxdx=tanxsinx+C=f(x)

where CC is the constant of integration.

The question says that f((5pi)/4)=0f(5π4)=0, so

tan((5pi)/4)-sin((5pi)/4) + C = 0tan(5π4)sin(5π4)+C=0

C = 1 + sqrt2/2 = (2+sqrt2)/2C=1+22=2+22

Therefore,

f(x) = tanx-sinx+(2+sqrt2)/2f(x)=tanxsinx+2+22