intsec^2x - cosxdx = intsec^2xdx-intcosxdx∫sec2x−cosxdx=∫sec2xdx−∫cosxdx
These are known integrals:
d/dxtanx = sec^2x -> intsec^2xdx = tanxddxtanx=sec2x→∫sec2xdx=tanx
d/dxsinx = cosx -> intcosxdx = sinxddxsinx=cosx→∫cosxdx=sinx
therefore,
intsec^2x-cosxdx = tanx - sinx + C = f(x)∫sec2x−cosxdx=tanx−sinx+C=f(x)
where CC is the constant of integration.
The question says that f((5pi)/4)=0f(5π4)=0, so
tan((5pi)/4)-sin((5pi)/4) + C = 0tan(5π4)−sin(5π4)+C=0
C = 1 + sqrt2/2 = (2+sqrt2)/2C=1+√22=2+√22
Therefore,
f(x) = tanx-sinx+(2+sqrt2)/2f(x)=tanx−sinx+2+√22