How do you differentiate #2cos(x)+cos^2(x)#? Calculus Differentiating Trigonometric Functions Derivative Rules for y=cos(x) and y=tan(x) 1 Answer Mia Apr 11, 2017 #-2sinx-sin2x# Explanation: #d/dx(2cosx+cos^2x)# #" "# #=d/dx(2cosx)+d/dx(cos^2x)# #" "# #=2(d/dx(cosx))+2cos^(2-1)x(d/dx(cosx))# #" "# #=2(-sinx)+2cosx(-sinx)# #" "# #=-2sinx-2cosxsinx# #" "# #=-2sinx-sin2x# Answer link Related questions What is the derivative of #y=cos(x)# ? What is the derivative of #y=tan(x)# ? How do you find the 108th derivative of #y=cos(x)# ? How do you find the derivative of #y=cos(x)# from first principle? How do you find the derivative of #y=cos(x^2)# ? How do you find the derivative of #y=e^x cos(x)# ? How do you find the derivative of #y=x^cos(x)#? How do you find the second derivative of #y=cos(x^2)# ? How do you find the 50th derivative of #y=cos(x)# ? How do you find the derivative of #y=cos(x^2)# ? See all questions in Derivative Rules for y=cos(x) and y=tan(x) Impact of this question 3580 views around the world You can reuse this answer Creative Commons License