How do you differentiate #y=sin^-1(3x^5+1)^3#?

1 Answer
Apr 13, 2017

#y'=(45x^4(3x^5+1)^2)/sqrt(1-(3x^5+1)^6)#

Explanation:

#y=sin^(-1)(3x^5+1)^3#

By #(sin^(-1)u)'=1/sqrt(1-u^2)# and Chain Rule,

#y'=1/sqrt(1-[(3x^5+1)^3]^2) cdot [(3x^5+1)^3]' #

By Power Rule and Cahin Rule,

#y'=1/sqrt(1-(3x^5+1)^6)cdot3(3x^5+1)^2(15x^4)#

By cleaning up a bit,

#y'=(45x^4(3x^5+1)^2)/sqrt(1-(3x^5+1)^6)#

I hope that this was clear.