Question #34fda

1 Answer

Because lim_(x->0^-)f(x)!=lim_(x->0^+)f(x) and is different from f(0)=0.

We have that

lim_(x->0^-)[absx]/(x^2+2x)=lim_(x->0^-)[-x]/[x^2+2x]=lim_(x->0^-)-[1]/[x+2]=-1/2

and

lim_(x->0^+)[absx]/(x^2+2x)=lim_(x->0^+)[x]/[x^2+2x]=lim_(x->0^+)[1]/[x+2]=1/2

The graph of f(x) around zero is

enter image source here