How do you show that the function f(x)=1-sqrt(1-x^2) is continuous on the interval [-1,1]?

1 Answer
May 1, 2015

f(x) = 1 - sqrt(1-x^2) has domain [-1,1]

For a in (-1,1), lim_(xrarra) f(x) = f(a) because

lim_(xrarra) f(x) =lim_(xrarra)(1 - sqrt(1-x^2)) = 1-lim_(xrarra)sqrt(1-x^2)

= 1-sqrt(lim_(xrarra) (1-x^2)) = 1-sqrt(1-lim_(xrarra) x^2))

=1-sqrt(1-a^2) = f(a)

So f is continuous on (-1,1).

Similar reasoning will show that

lim_(xrarr-1^+) f(x) = f(-1) and

lim_(xrarr1^-) f(x) = f(1)

So f is continuous on [-1,1].