Question #6aa72

1 Answer

Explanation:

By taking the natural log of both sides,

ln(y)=ln(ln x)^(tan^(-1)x)ln(y)=ln(lnx)tan1x

By the log property: ln x^r=r ln xlnxr=rlnx,

Rightarrow ln(y)=tan^(-1)x cdot ln(ln x)ln(y)=tan1xln(lnx)

By differentiating using Product Rule,

Rightarrow (y')/y=(tan^(-1)x)'cdot ln(lnx)+tan^(-1)x cdot(ln(ln x))'

By (tan^(-1)x)'=1/(1+x^2) & [ln(g(x))]'=(g'(x))/(g(x)),

Rightarrow (y')/y=1/(1+x^2) cdot ln(ln x)+tan^(-1)x cdot (1/x)/(ln x)

By multiplying both sides by y,

#y'=(ln(ln x))/(1+x^2)+(tan^(-1)x)/(xln x)^(tan^(-1)x)#

I hope that this was clear.