What is the 2nd term in expansion of (3u-1)^3(3u1)3?

1 Answer
Apr 24, 2017

-27u^227u2

Explanation:

(3u-1)^3 = 1*((3u)^3*(-1)^0) + 3*((3u)^2*(-1)^1) + 3*((3u)^1*(-1)^2) + 1*((3u)^0*(-1)^3).(3u1)3=1((3u)3(1)0)+3((3u)2(1)1)+3((3u)1(1)2)+1((3u)0(1)3).
If you look closely, the sum of powers in each term on the right hand side of the equation above is 3.
Now, the 2nd term:
-3*9u^2*1 = -27u^2.39u21=27u2.