Question #dc4c4

2 Answers
Apr 29, 2017

[[H_2CO_3]]/[[HCO_3^-]]=0.0823[H2CO3][HCO3]=0.0823

Explanation:

Let's start out by writing the balanced equation for the dissociation of carbonic acid:

H_2CO_3rightleftharpoonsH^++HCO_3^-H2CO3H++HCO3

Remember the dissociation constant will be the ratio of the dissociated products (H^+H+ and HCO_3^-HCO3) to the carbonic acid (H_2CO_3H2CO3).

K_d=([H^+][HCO_3^-])/[[H_2CO_3]]Kd=[H+][HCO3][H2CO3]

Looking at this equation, we can divide both sides by [H^+][H+] to obtain a ratio between the bicarbonate and the carbonic acid.

([HCO_3^-])/[[H_2CO_3]]=K_d/[[H^+]][HCO3][H2CO3]=Kd[H+]

Since we want the ratio of carbonic acid to bicarbonate, just invert the equation:

([H_2CO_3])/[[HCO_3^-]]=[[H^+]]/K_d[H2CO3][HCO3]=[H+]Kd

Now, all we need to do is find [H^+][H+] using the definition of pH:

pH=-log[H^+]pH=log[H+]
[H^+]=10^(-pH)[H+]=10pH
[H^+]=10^-7.45[H+]=107.45
[H^+]=3.55 *10^-8M[H+]=3.55108M

Plugging back in, the ratio of carbonic acid to bicarbonate becomes:

([H_2CO_3])/[[HCO_3^-]]=[[H^+]]/K_d[H2CO3][HCO3]=[H+]Kd
([H_2CO_3])/[[HCO_3^-]]=(3.55*10^-8)/(4.31*10^-7)[H2CO3][HCO3]=3.551084.31107
([H_2CO_3])/[[HCO_3^-]]=0.0823[H2CO3][HCO3]=0.0823

Apr 29, 2017

One can also use the Henderson-Hasselbalch Equation to calculate the Bicarb:Carbonic Acid Ratio then take the reciprocal.

Explanation:

pH = pKa + log([HCO_3^-]/[H_2CO_3])pH=pKa+log(HCO3H2CO3)

7.45 = -log(4.31E-7)7.45=log(4.31E7) + log([HCO_3^-]/[H_2CO_3])log(HCO3H2CO3)

7.45 = 6.37 + log([HCO_3^-]/[H_2CO_3])7.45=6.37+log(HCO3H2CO3)

1.085 = log([HCO_3^-]/[H_2CO_3])1.085=log(HCO3H2CO3)

([HCO_3^-]/[H_2CO_3])(HCO3H2CO3) = 10^(1.085) = 12.162101.085=12.162

([H_2CO_3]/[HCO_3^-])(H2CO3HCO3) = (1/12.162) = 0.0822(112.162)=0.0822

[H_2CO_3]:[HCO_3^-] = 0.0822 : 1.0000[H2CO3]:[HCO3]=0.0822:1.0000