How to express z= 1/(1-i) in polar form?

1 Answer
May 2, 2017

Simplify into a + bi form first

Explanation:

z = 1/(1-i) = 1/(1-i)*(1+i)/(1+i) = (1+i)/2 = 1/2 + i/2z=11i=11i1+i1+i=1+i2=12+i2

Now find r = | z |r=|z|.

|z| = sqrt(1/4 + 1/4) = sqrt(2/4) = sqrt(2)/2|z|=14+14=24=22

In Quadrant 1, theta = arctan(b/a) = arctan(1) = pi/4θ=arctan(ba)=arctan(1)=π4.

Therefore, z = (sqrt(2)/2)(cos(pi/4) + isin(pi/4))z=(22)(cos(π4)+isin(π4)).