SO_2SO2 gas is bubbled through a solution of K_2Cr_2O_7K2Cr2O7
Half equations:
Cr_2O_7^(2-) (aq)Cr2O2−7(aq) + 14H^+ (aq)14H+(aq) + 6e^-6e− →2Cr^(3+) (aq)2Cr3+(aq) + 7H_2O (l)7H2O(l)
SO_2 (g)SO2(g) + 2H_2O (l)2H2O(l) → SO_4^(2-) (aq)SO2−4(aq) + 4H^+ (aq)4H+(aq) + 2e^-2e−
(i'm not sure if you need this but i'll just include it)
Multiply half-eq'n 2 by 3
3SO_2 (g)3SO2(g) + 6H_2O (l)6H2O(l) → 3SO_4^(2-) (aq)3SO2−4(aq) + 12H^+ (aq)12H+(aq) + 6e^-6e−
Remove electrons from both equations and then add them together:
Cr_2O_7^(2-) Cr2O2−7 + 14H^+ 14H+ + 3SO_2 3SO2 + 6H_2O 6H2O →2Cr^(3+) 2Cr3+ + 7H_2O7H2O + 3SO_4^(2-)3SO2−4 + 12H^+12H+
And basically just subtract the same species to get a simpler answer.
e.g. 14H^+14H+ on RHS minus 12H^+12H+ on LHS gives 2H^+2H+ on RHS.
Full equation:
Cr_2O_7^(2-) (aq)Cr2O2−7(aq) + 3SO_2 (g)3SO2(g) + 2H^+ (aq)2H+(aq) → 2Cr^(3+)(aq)2Cr3+(aq) + 3SO_4^(2-) (aq)3SO2−4(aq) + H_2O (l)H2O(l)
Solution turns from orange to green.