What is the Maclaurin series for #ln(5-x)#?

2 Answers
Jul 16, 2017

#ln(5-x) = 4 - sum_{n=1}^{\infty}((-4)^n/n(\sum_{r=1}^{\infty}{::}_nC_r(-4)^{-r}))x^n)#.

Explanation:

#ln(5-x)=ln(1-(x-4))#

Then, #ln(1-x) = -(sum_{n=1}^{\infty}x^n/n)#,
#ln(1-(x-4)) = -(sum_{n=1}^{\infty}(x-4)^n/n)#,
#ln(5-x) = -sum_{n=1}^{\infty}sum_{r=1}^{n}(({::}_nC_r (-4)^{n-r})/n x^r )#,
#ln(5-x) = -(-4 + sum_{n=1}^{\infty}((-4)^n/n(\sum_{r=1}^{\infty}{::}_nC_r(-4)^{-r}))x^n)#,
#ln(5-x) = 4 - sum_{n=1}^{\infty}((-4)^n/n(\sum_{r=1}^{\infty}{::}_nC_r(-4)^{-r}))x^n)#.

Expansion of #ln(1-x)# holds for #abs(x)<1#. Then our expansion for #ln(5-x)# holds for #abs(x-4)<1# or #3<x<5#.

Jul 16, 2017

# ln(5-x) = ln(5) - x/5-x^2/50-x^3/375-x^4/2500-x^5/15625- ...#

And in sigma notation, this is

# ln(5-x) = ln5 -sum_(n=1)^oo (x^n)/(n5^n) #

Explanation:

The power series for #ln(1-x)# is often quoted in examination formula books etc, and is as follows:

# ln(1-x) = -x-x^2/2-x^3/3-x^4/4-x^5/5 + ...#
# " " = -sum_(n=1)^oo x^n/n #

So for the series we require, we have:

# ln(5-x) = ln(5(1-x/5)) #
# " " = ln(5) + ln (1-x/5) #

So then if we substitute #x# for #x/5# in the initial expansion we get:

# ln(5-x) = ln(5) + {-(x/5)-(x/5)^2/2-(x/5)^3/3-(x/5)^4/4-(x/5)^5/5} + ...#

# " " = ln(5) - {x/5+(x^2/25)/2+(x^3/125)/3+(x4/625)/4+(x^5/3125)/5} + ...#

# " " = ln(5) - x/5-x^2/50-x^3/375-x^4/2500-x^5/15625- ...#

And in sigma notation, this is

# ln(5-x) = ln5 -sum_(n=1)^oo (x^n)/(n5^n) #