What is f(x) = int tanx dxf(x)=∫tanxdx if f(pi/8) = 0 f(π8)=0?
2 Answers
Explanation:
Use the definition of
f(x)=inttanxdx=intsinx/cosxdxf(x)=∫tanxdx=∫sinxcosxdx
We can put this in the form
f(x)=-int(-sinx)/cosxdx=-int(du)/u=-lnabsu+C=-lnabscosx+Cf(x)=−∫−sinxcosxdx=−∫duu=−ln|u|+C=−ln|cosx|+C
We can use the initial condition
0=-lnabscos(pi/8)+C0=−ln∣∣cos(π8)∣∣+C
C=ln(cos(pi/8))C=ln(cos(π8))
We can find this using a form of the cosine double angle formula:
cos(pi/8)=sqrt(1/2(1+cos(pi/4)))=sqrt(1/2(1+sqrt2/2))cos(π8)=√12(1+cos(π4))= ⎷12(1+√22)
=sqrt(1/2((2+sqrt2)/2))=sqrt(2+sqrt2)/2= ⎷12(2+√22)=√2+√22
Thus,
C=ln(sqrt(2+sqrt2)/2)C=ln(√2+√22)
and
f(x)=-lnabscosx+ln(sqrt(2+sqrt2)/2)f(x)=−ln|cosx|+ln(√2+√22)
Explanation:
We shall evaluate
Let
Then