What is f(x) = int tanx dxf(x)=tanxdx if f(pi/8) = 0 f(π8)=0?

2 Answers
Aug 30, 2017

f(x)=-lnabscosx+ln(sqrt(2+sqrt2)/2)f(x)=ln|cosx|+ln(2+22)

Explanation:

Use the definition of tanxtanx as the ratio of sinxsinx to cosxcosx:

f(x)=inttanxdx=intsinx/cosxdxf(x)=tanxdx=sinxcosxdx

We can put this in the form int(du)/u=lnabsu+Cduu=ln|u|+C if we let u=cosxu=cosx. Differentiating this substitution implies that du=-sinxdxdu=sinxdx, so we need to multiply the integrand by -11. Balance this by also multiplying the exterior of the integral by -11.

f(x)=-int(-sinx)/cosxdx=-int(du)/u=-lnabsu+C=-lnabscosx+Cf(x)=sinxcosxdx=duu=ln|u|+C=ln|cosx|+C

We can use the initial condition f(pi/8)=0f(π8)=0 to determine the unknown constant of integration CC:

0=-lnabscos(pi/8)+C0=lncos(π8)+C

C=ln(cos(pi/8))C=ln(cos(π8))

We can find this using a form of the cosine double angle formula: cos2theta=2cos^2theta-1cos2θ=2cos2θ1. Thus, cos(pi/4)=2cos^2(pi/8)-1cos(π4)=2cos2(π8)1, and

cos(pi/8)=sqrt(1/2(1+cos(pi/4)))=sqrt(1/2(1+sqrt2/2))cos(π8)=12(1+cos(π4))= 12(1+22)

=sqrt(1/2((2+sqrt2)/2))=sqrt(2+sqrt2)/2= 12(2+22)=2+22

Thus,

C=ln(sqrt(2+sqrt2)/2)C=ln(2+22)

and

f(x)=-lnabscosx+ln(sqrt(2+sqrt2)/2)f(x)=ln|cosx|+ln(2+22)

Aug 30, 2017

f(x) = lnabs(secx) + ln(sqrt(2+sqrt2)/2)f(x)=ln|secx|+ln(2+22)

Explanation:

We shall evaluate f(x)f(x) using a different method.

inttanxdx = int(tanxsecx)/secxdxtanxdx=tanxsecxsecxdx

Let u = secxu=secx and du=secxtanx dxdu=secxtanxdx

Then inttanxdx = int1/udu = lnabsu = lnabs(secx) + "constant"tanxdx=1udu=ln|u|=ln|secx|+constant

lnsecx -= -lncosxlnsecxlncosx so the constant of integration will be the same as the other answer.