How do you find the derivative of 6(z^2+z-1)^-1?
2 Answers
Aug 30, 2017
Explanation:
"differentiate using the "color(blue)"chain rule"
"given "y=f(g(x)" then"
dy/dx=f'(g(x))xxg'(x)larr" chain rule"
d/dz(6(z^2+z-1)^-1)
=-6(z^2+z-1)^-2xxd/dz(z^2+z-1)
=(-6(2z+1))/(z^2+z-1)^2=-(12z+6)/(z^2+z-1)^2
Aug 30, 2017
Recall the power rule:
Combining the chain rule with the power rule for some function
Thus:
d/(dz)6(z^2+z-1)^-1=6(-1(z^2+z-1)^-2)d/(dz)(z^2+z-1)
And we can use the power rule to find the derivative of
d/(dz)6(z^2+z-1)^-1=-6(z^2+z-1)^-2(2z+1)
=color(blue)((-6(2z+1))/(z^2+z-1)^2