The rectangular coordinates of a point are given #(4, -4sqrt3)#, how do you find polar coordinates of the point? Precalculus Polar Coordinates Converting Coordinates from Rectangular to Polar 1 Answer Bdub Sep 11, 2017 Use the formulas #x^2+y^2 = r^2# and #tan theta =y/x# #r^2=(4)^2+(-4sqrt3)^2=16+48=64# #r=sqrt64=8# #tan theta = y/x=(-4sqrt3)/4=(-cancel(4)sqrt3)/cancel 4=-sqrt3# #theta=tan^-1 -sqrt3=-pi/3# #:.(r,theta)=(8,-pi/3)# Answer link Related questions What are the polar coordinates of #(0, -2)#? What are the polar coordinates of #(-4, 0)#? What are the polar coordinates of #(3, 4)#? What are the polar coordinates of #(-2,0)#? How do I convert Cartesian coordinates to polar coordinates? How do I find the polar form of #a+bi#? How do I find the polar form of #3sqrt2 - 3sqrt2i#? How do you change (4, -1) from rectangular to cylindrical coordinates between [0, 2π)? How do you change (0,3,-3) from rectangular to spherical coordinates? How do you find the rectangular coordinates if you given the cylindrical coordinate #(5, pi/6, 5)#? See all questions in Converting Coordinates from Rectangular to Polar Impact of this question 11109 views around the world You can reuse this answer Creative Commons License