How do you differentiate f(x)=sqrt((1-x)/(1+x))f(x)=1x1+x?

1 Answer
Sep 21, 2017

f'(x)=x/((1+x)sqrt(1-x^2))

Explanation:

f(x)=sqrt(1-x)/sqrt(1+x)
By applying quotient rule,
Let u=sqrt(1-x) and
v=sqrt(1+x)
f'(x)=(u'v-v'u)//v^2
f'(x)={1/2root(-1/2)(1-x)*sqrt(1+x)-1/2root(-1/2)(1+x)*sqrt(1-x)}/(1+x)
f'(x)=1/2{(sqrt(1+x)/sqrt(1-x))-(sqrt(1-x)/sqrt(1+x)}//(1+x)
f'(x)=1/2{1+x-1+x}/((1+x)sqrt(1-x^2))
f'(x)=x/((1+x)sqrt(1-x^2))