How do you differentiate f(x)= (1 + sin^2x)/(1 - sin2x) using the quotient rule?

1 Answer

(dy)/(dx)=(2cosxsinx)/(1-sin2x)+(2cos2x(1+sin^2x))/(1-sin2x)^2

Explanation:

We must recall two things to make this simpler. First, f (x)=g (x)/(h (x)) -> f'(x) = (hg'-h'g)/h^2.

Here, g(x)=1+sin^2x=1+(sinx)^2

g'(x)=d/(dx)[1]+d/(dx)[(sinx)^2]
g'(x)=2cosxsinx

h(x)=1-sin(2x)
h'(x)=d/(dx)[1]-d/(dx)[sin2x]
h'(x)=-2cos2x

(dy)/(dx)=(2cosxsinx(1-sin2x)+2cos2x(1+sin^2x))/(1-sin2x)^2

(dy)/(dx)=(2cosxsinx)/(1-sin2x)+(2cos2x(1+sin^2x))/(1-sin2x)^2