How do you solve (1+(0.064/365))^(365t)=4(1+(0.064365))365t=4?

2 Answers
Oct 16, 2017

t=346.58t=346.58

Explanation:

As (1+0.004/365)^(365t)=4(1+0.004365)365t=4, taking logs on both sides, we get

365tlog(1+0.004/365)=log4365tlog(1+0.004365)=log4

or 365tlog(1+0.0000109589)=log4365tlog(1+0.0000109589)=log4

or 3655txx0.0000047593655=0.602063655t×0.0000047593655=0.60206

or 365t=0.60206/0.0000047593655=126500365t=0.602060.0000047593655=126500

and t=126500/365=346.58t=126500365=346.58

Oct 27, 2017

t~~500ln(2)~~346.57

Explanation:

As (1+0.004/365)^(365t)=4(1+0.004365)365t=4, taking lns on both sides, we get

365t.ln(1+0.004/365)=ln4365t.ln(1+0.004365)=ln4

... as 0.004/365< <1:0.004365<<1:

... #ln(1+0.004/365=0.004/365

So the expression turns into:

365t(0.004/365)~~ln(4)365t(0.004365)ln(4)

0.004t~~ln(4)0.004tln(4)

t~~250ln(4)~~500ln(2)~~346.57