What is the area enclosed by r=-thetasin(-16theta^2+(7pi)/12) r=θsin(16θ2+7π12) between theta in [0,(pi)/4]θ[0,π4]?

1 Answer
Nov 18, 2017

A_"Total" = 0.0597217ATotal=0.0597217

Explanation:

To determine an area in polar coordinates, it first helps to look at the graph that is depicted by the given parameters:

r=-thetasin(-16theta^2+(7pi)/12)r=θsin(16θ2+7π12) with theta in [0, pi/4]θ[0,π4]

![Desmos.com and MS Paint](useruploads.socratic.org)

Not every bit of the graph in within [0,pi/4][0,π4] is an enclosed area or loop. Once we find the rr and thetaθ values corresponding to the three loops, we can use them as limits of integration. Each area formed by a loop can be determined by the formula:

A=int_a^b1/2f[theta]^2 d thetaA=ba12f[θ]2dθ

Three loops, means three integrals. The roots of radius, rr, will give us the limits of integration.

-thetasin(-16theta^2+(7pi)/12) = 0θsin(16θ2+7π12)=0

The trivial solution is when theta=0θ=0. Because the sine function is zero at pi nπn, we can say sin(-16 theta^2 +(7pi)/12)=0sin(16θ2+7π12)=0 whenever

-16 theta^2 + (7pi)/12 = pi n16θ2+7π12=πn

-16 theta^2 = pi n - (7pi)/1216θ2=πn7π12

theta^2 = -(pi n)/16 + (7 pi)/192θ2=πn16+7π192

theta = +-sqrt(-(pi n)/16 + (7 pi)/192)θ=±πn16+7π192

We know thetaθ is restricted to the interval [0, pi//4][0,π/4]. Because our interval involves only positive values, then we can write:

0 <= sqrt(-(pi n)/16 + (7 pi)/192) <= pi/40πn16+7π192π4

0 <= -(pi n)/16 + (7 pi)/192 <= pi^2/160πn16+7π192π216

0 <= -pi n + (7 pi)/12 <= pi^20πn+7π12π2

-(7 pi)/12 <= -pi n <= pi^2 - (7 pi)/127π12πnπ27π12

7/12 >= n >= -pi + 7/12712nπ+712

-2.55826 <= n <= 0.5833332.55826n0.583333

The integers, nn, that lie on this interval are -2, -1, 02,1,0. The respective angles, thetaθ, with those values of nn are theta=0θ=0 and:

theta ~~0.3384, 0.5576, 0.7122θ0.3384,0.5576,0.7122

Now we have our limits of integration for three integrals.

A_1=int_0^0.3384 1/2[-thetasin(-16theta^2+(7pi)/12)]^2 d thetaA1=0.3384012[θsin(16θ2+7π12)]2dθ

A_2=int_0.3384^0.5576 1/2[-thetasin(-16theta^2+(7pi)/12)]^2 d thetaA2=0.55760.338412[θsin(16θ2+7π12)]2dθ

A_3=int_0.5576^0.7122 1/2[-thetasin(-16theta^2+(7pi)/12)]^2 d thetaA3=0.71220.557612[θsin(16θ2+7π12)]2dθ

Using a computer algebra system, we get

A_1 = 0.0057972A1=0.0057972

A_2 = 0.0225589A2=0.0225589

A_3 = 0.0313656A3=0.0313656

A_"Total" = 0.0597217ATotal=0.0597217