How do you divide #( 8x^6-32x^5+4x^4 )/(x+2)#? Algebra Rational Equations and Functions Division of Polynomials 1 Answer Tamir E. Dec 30, 2017 #f(x)={8x^6-32x^5+4x^4}/{x+2}={4x^4(2x^2-8x+1)}/{x+2}# #2x-12# #bar {2x^2-8x+1}|x+2# #-# #2x^2+4x# #=# #0x^2-12x+1# #-# #0x^2-12x-24# #=# #0x^2+0x-23# #=># #f(x)=4x^4[(2x-12)-23/{x+2}]# Answer link Related questions What is an example of long division of polynomials? How do you do long division of polynomials with remainders? How do you divide #9x^2-16# by #3x+4#? How do you divide #\frac{x^2+2x-5}{x}#? How do you divide #\frac{x^2+3x+6}{x+1}#? How do you divide #\frac{x^4-2x}{8x+24}#? How do you divide: #(4x^2-10x-24)# divide by (2x+3)? How do you divide: #5a^2+6a-9# into #25a^4#? How do you simplify #(3m^22 + 27 mn - 12)/(3m)#? How do you simplify #(25-a^2) / (a^2 +a -30)#? See all questions in Division of Polynomials Impact of this question 1701 views around the world You can reuse this answer Creative Commons License