How do you simplify n3(n3)3?

1 Answer
Jan 1, 2018

n12

Explanation:

PEMDAS
(Order of Operations)
Parenthesis, Exponents, Multiplication, Division, Addition and Subtraction

so the given is:

n3(n3)3

First, we need to evaluate the term in a parenthesis,

Adding the exponents, just follow the rule of the exponents.

where: (na)(na)=(n2a)or(na+a)

(n3)3=(n3)(n3)(n3)=n9

or

(Multiplying the exponent to exponent just follow the rule of the exponents).

where: (xn)m=xnmorxnm

(n3)3=n9

so we get, n9

plugging the simplified to term to the first term, we get,

n3(n9)

same rule, we just need to add the exponents, following the rule of:

where: (na)(na)=(n2a)or(na+a)

n3(n9)=n3+9=n12

so simplified answer is:

n12