How do you find the derivative of #sin(cos(6x))#?
2 Answers
Jan 18, 2018
Explanation:
We use the chain rule a bunch.
The chain rule says:
So,
cleaning up:
Jan 18, 2018
Explanation:
#"differentiate using the "color(blue)"chain rule"#
#"given "y=f(g(h(x)))" then"#
#dy/dx=f'(g(h(x)))xxg'(h(x))xxg'(x)#
#rArrd/dx(sin(cos(6x))#
#=cos(cos(6x))xxd/dx(cos(6x))xxd/dx(6x)#
#=cos(cos(6x))(-sin(6x))(6)#
#=-6cos(cos(6x))sin(6x)#