How do you simplify (y ^ { 9} ) ^ { \frac { 1} { 2} } ( p ^ { 9} ) ^ { 0}(y9)12(p9)0?

2 Answers

yy^(9÷2)#

Explanation:

Consider

y^((9)^((1/2))y(9)(12)

By the law of indices

(a^m)^n = a^(mn)(am)n=amn

y^((9)^(1/2))=y^(9xx1/2)y(9)12=y9×12

=y^(9/2)=y92

Consider

(p^9)^0(p9)0

Anything raised to the power zero is 11. Hence

y^((9)^(1/2)) xx (p^9)^0 = y^(9/2) xx 1y(9)12×(p9)0=y92×1

The answer is

y^(9/2)y92

Jan 30, 2018

y ^3y3

Explanation:

(y ^ { 9} ) ^ { \frac { 1} { 2} } ( p ^ { 9} ) ^ { 0}(y9)12(p9)0

According to rules of exponents, any number with an exponent zero gives 1, so ( p ^ { 9} ) ^ { 0} = 1(p9)0=1 .

=> (y ^ { 9} ) ^ { \frac { 1} { 2} } cdot( 1 ) (y9)12(1)

=> (y ^ ((3)^2))^ { \frac { 1} { 2} } (y(3)2)12

=> (y ^ (3))^{ \frac { 2} { 2} } (y3)22

=> y ^3y3