How do you find the sum of the finite geometric sequence of Sigma 2^(n-1) from n=1 to 9?

2 Answers
Feb 14, 2018

sum_(n=1)^9 2^(n-1) = 511

Explanation:

In general:

1+x+x^2+...+x^(n-1) = (x^n-1)/(x-1)

so:

sum_(n=1)^9 2^(n-1) = sum_(n=0)^8 2^n =(2^9-1)/(2-1) = 511

Feb 14, 2018

\

\qquad \qquad \qquad \qquad \qquad sum_{ n = 1 }^9 \ 2^{ n - 1 } \ = 511.

Explanation:

\

"Recall the result (formula) for the sum of a finite geometric"
"series:"

\quad sum_{k = 0}^n \ r^n \ = \ { r^{ n + 1 } - 1 } / { r - 1 }; \qquad \qquad \qquad "where" \ r \ "is the common ratio".

"The sum you have fits exactly this, with some small"
"adjustments."
"Notice that the fundamental formula above starts with the"
"index variable" \ [ k ] \ \ "at "0," and your sum starts with the"
"index variable" \ [ n ] \ \ "at "1."

"So let's start with your sum, and make the small adjustments"
"so we can use the fundamental formula above:"

\qquad \qquad \qquad sum_{ n = 1 }^9 \ 2^{ n - 1 } \ = \ [ 2^{ 0 - 1 } \ + \ sum_{ n = 1 }^9 \ 2^{ n - 1 } ] \ - \ 2^{ 0 - 1 }.

"Continuing, absorb the" \ \ 2^{ 0 - 1 } \ \ "term into the larger sum, since:"
2^{ 0 - 1 } = \ 2^{ n - 1 }, \ "with" \ n = 0:

\qquad \qquad \qquad \qquad \qquad = \ [ sum_{ n = 0 }^9 \ 2^{ n - 1 } ] \ - \ 2^{ - 1 }

\qquad \qquad \qquad \qquad \qquad = \ [ sum_{ n = 0 }^9 \ 2^{ - 1 }\cdot 2^{ n } ] \ - \ 2^{ - 1 }.

"Continuing, pull out the" \ 2^{ - 1 } \ "factor inside the last sum:"

\qquad \qquad \qquad \qquad \qquad = \ ( 2^{ - 1 } \cdot [ sum_{ n = 0 }^9 \ 2^{ n } ] ) \ - \ 2^{ - 1 }.

"Now pull out the" \ 2^{ - 1 } \ "factor from the two terms here:"

\qquad \qquad \qquad \qquad \qquad = \ 2^{ - 1 } \cdot ( [ sum_{ n = 0 }^9 \ 2^{ n } ] \ - \ 1 ).

"Thus we have now:"

\qquad \qquad \qquad sum_{ n = 1 }^9 \ 2^{ n - 1 } \ = \ 2^{ - 1 } \cdot ( [ sum_{ n = 0 }^9 \ 2^{ n } ] \ - \ 1 ).

"Now the sum inside the brackets fits exactly the"
"fundamental formula above -- using:" \ \ r = 2, n = 9,"in that formula. So, continuing:"

\qquad \qquad \qquad \qquad \qquad = \ 2^{ - 1 } \cdot ( [ { 2^{ 9 + 1 } - 1 } / { 2 - 1 } ] \ - \ 1 )

\qquad \qquad \qquad \qquad \qquad = \ 2^{ - 1 } \cdot ( [ (2^{ 10 } - 1 } / { 1 } ] \ - \ 1 )

\qquad \qquad \qquad \qquad \qquad = \ 2^{ - 1 } \cdot ( (2^{ 10 } - 1 ) \ - \ 1 )

\qquad \qquad \qquad \qquad \qquad = \ 2^{ - 1 } \cdot ( 2^{ 10 } - 1 \ - \ 1 )

\qquad \qquad \qquad \qquad \qquad = \ 2^{ - 1 } \cdot ( 2^{ 10 } - 2 )

\qquad \qquad \qquad \qquad \qquad = \ ( 2^{ - 1 } \cdot 2^{ 10 } ) - ( 2^{ - 1 } \cdot 2 )

\qquad \qquad \qquad \qquad \qquad = \ 2^{ 10 - 1 } - 2^{ 1 - 1 }

\qquad \qquad \qquad \qquad \qquad = \ 2^{ 9 } - 2^{ 0 }

\qquad \qquad \qquad \qquad \qquad = \ 512 - 1

\qquad \qquad \qquad \qquad \qquad = \ 511.

"This our answer."

\

"Summarizing:"

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \ \ sum_{ n = 1 }^9 \ 2^{ n - 1 } \ = 511.

\

"Note: There are other methods for doing this, using different"
"techniques, for example, one called changing the index of"
"summation. This is a good technique, and may be easier in"
"this case. The techniques displayed here illustrate alternatives"
"that can be powerful, and are quite frequently very convenient."