"Recall that, for two vectors:" \qquad vec{a}, vec{b} \qquad "we have:"
\qquad vec{a} \quad "and" \quad vec{b} \qquad \quad "are orthogonal" \qquad \qquad hArr \qquad \qquad vec{a} cdot \vec{b} \ = \ 0.
"Thus:"
\qquad < -2, 3 > \quad "and" \quad < -5, k > \qquad \quad "are orthogonal" \qquad \qquad hArr
\qquad \qquad < -2, 3 > cdot < -5, k > \ = \ 0 \qquad \qquad hArr
\qquad \qquad \qquad ( -2 ) ( -5 ) + ( 3 ) ( k ) \ = \ 0 \qquad \qquad hArr
\qquad \qquad \qquad \qquad \qquad \qquad 10 + 3 k \ = \ 0 \qquad \qquad hArr
\qquad \qquad \qquad \qquad \qquad \qquad \quad 3 k \ = \ -10 \qquad \qquad hArr
\qquad \qquad \qquad \qquad \qquad \qquad \quad k \ = \ -10/3.
"So, from beginning to end here:"
\qquad < -2, 3 > \quad "and" \quad < -5, k > \qquad \quad "are orthogonal" \qquad \qquad hArr
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad k \ = \ -10/3.
"Thus, we conclude:"
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad k \ = \ -10/3.