Let veca=<−2,3>a=<2,3> and vecb =<−5,k>b=<5,k>. Find kk so that vecaa and vecbb will be orthogonal. Find k so that →a and →b will be orthogonal?

Let →a=⟨−2,3⟩ and →b =⟨−5,k⟩.

Find k so that →a and →b will be orthogonal.

1 Answer
Mar 2, 2018

vec{a} \quad "and" \quad vec{b} \quad \ "will be orthogonal precisely when:"

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad k \ = \ -10/3.

Explanation:

"Recall that, for two vectors:" \qquad vec{a}, vec{b} \qquad "we have:"

\qquad vec{a} \quad "and" \quad vec{b} \qquad \quad "are orthogonal" \qquad \qquad hArr \qquad \qquad vec{a} cdot \vec{b} \ = \ 0.

"Thus:"

\qquad < -2, 3 > \quad "and" \quad < -5, k > \qquad \quad "are orthogonal" \qquad \qquad hArr

\qquad \qquad < -2, 3 > cdot < -5, k > \ = \ 0 \qquad \qquad hArr

\qquad \qquad \qquad ( -2 ) ( -5 ) + ( 3 ) ( k ) \ = \ 0 \qquad \qquad hArr

\qquad \qquad \qquad \qquad \qquad \qquad 10 + 3 k \ = \ 0 \qquad \qquad hArr

\qquad \qquad \qquad \qquad \qquad \qquad \quad 3 k \ = \ -10 \qquad \qquad hArr

\qquad \qquad \qquad \qquad \qquad \qquad \quad k \ = \ -10/3.

"So, from beginning to end here:"

\qquad < -2, 3 > \quad "and" \quad < -5, k > \qquad \quad "are orthogonal" \qquad \qquad hArr

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad k \ = \ -10/3.

"Thus, we conclude:"

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad k \ = \ -10/3.