How do you write an equation in point-slope form of the line that passes through the given points (-1,-8),(4,-6)?

2 Answers
Mar 3, 2018

#y+8=2/5(x+1)#

Explanation:

#"the equation of a line in "color(blue)"point-slope form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y-y_1=m(x-x_1))color(white)(2/2)|)))#

#"where m is the slope and "(x_1,y_1)" a point on the line"#

#"calculate m using the "color(blue)"gradient formula"#

#•color(white)(x)m=(y_2-y_1)/(x_2-x_1)#

#"let "(x_1,y_1)=(-1,-8)" and "(x_2,y_2)=(4,-6)#

#rArrm=(-6-(-8))/(4-(-1))=2/5#

#"using "m=2/5" and "(x_1,y_1)=(-1,-8)#

#y-(-8)=2/5(x-(-1))#

#rArry+8=2/5(x+1)larrcolor(red)"in point-slope form"#

Mar 3, 2018

#y+6=-0.4(x-4)#

Explanation:

Hey!

Well firstly, we know the point-slope form equation:

#y−b=m(x−a)#

Next, we need to input the values that we are given in the question, in this case (-1,-8), (4,-6). To start, let's solve for m, or slope.

#m=(Δy)/(Δx)#

Inputting variables:

#m=[(-8)-(-6)]/[(-1)-(4)]=(2)/(5)=-0.4#

Finally, we input the slope value and one of the given points for the #b# and #a# values.

#y+6=-0.4(x-4)#

Good luck!