How do you find the second derivative of y=tan(x)?

1 Answer
Mar 4, 2018

2sec^2xtanx

Explanation:

First we find d/dxtanx.

We know that tanx=sinx/cosx

So we can use the quotient rule to solve for this:

d/dx(sinx/cosx)=(cosxd/dx(sinx)-sinxd/dx(cosx))/cos^2x

color(white)(d/dx(sinx/cosx))=(cosx(cosx)-sinx(-sinx))/cos^2x

color(white)(d/dx(sinx/cosx))=(cos^2x+sin^2x)/(cos^2x)=1/cos^2x

d/dx(sinx/cosx)=d/dxtanx=sec^2x

Now for d^2/dx^2tanx, or d/dxsec^2x

Which we can write as d/dx(secx)^2, which gives:

2secx(secxtanx), using the chain rule, where we compute d/(du)u^2 and d/dxsecx.

Which gives:

2sec^2xtanx

So:

d^2/dx^2tanx=2sec^2xtanx