How do you combine #12a - 7/(35a) - a - 1/(5a)#?

3 Answers
Mar 4, 2018

#11a-2/(5a)#

Explanation:

#12a-7/(35a)-a-1/(5a)# actually contains two different variables:

#a# and #1/a#.

#12a-7/(35a)-a-1/(5a)#

#=12a-a-7/(35a)-[1(7)]/[(5a)(7)]#

#=11a-7/(35a)-7/(35a)#

#=11a-14/(35a)#

#=11a-2/(5a)#

Mar 4, 2018

convert to whole numbers and then combine.

Explanation:

#7/(35a)# can be simplified to #1/(5a)# then we have another #1/(5a)# so we add those 2 and deal with the whole number separately. Thus we get #12a- a - 1/(5a) - 1/(5a) = 11a - 2/(5a)#.

Mar 4, 2018

#=(55a^2-a-2)/(5a)#

Explanation:

You have to add the fractions by finding a common denominator first and using the equivalent fractions.

#12a-7/(35a) -a-1/(5a)" "larr LCD = 35a#

The #LCD = 35a#

#=(12a)/1 xx(35a)/(35a)-7/(35a) -a/1xx(35a)/(35a)-1/(5a) xx7/7#

#= (420a^2)/(35a) -7/(35a)-(35a^2)/(35a)-(7)/(35a)#

#=(420a^2 -7-35a^2 -7)/(35a)#

#=(385a^2-7a-14)/(35a)#

There is common factor of #7#

#=(cancel7(55a^2-a-2))/(cancel35^5a)#

#=(55a^2-a-2)/(5a)#

Note that it would have been better to simplify right at the beginning!

#12a-cancel7/(cancel35^5a) -a-1/(5a)" "larr LCD = 5a#

#=(12a)/1-1/(5a) -a/1-1/(5a)#

#= (60a^2 -1-5a^2-1)/(5a)#

#=(55a^2-a-2)/(5a)#