How do write in simplest form given #-1/6-2/3#?

2 Answers
Mar 7, 2018

#color(magenta)(=-5/6#

Explanation:

#-1/6-2/3#

#= -(1xx1)/(6xx1)-(2xx2)/(3xx2)#

#=-1/6-4/6#

#color(magenta)(=-5/6#

~Hope this helps! :)

Mar 7, 2018

#-1/6 - 2/3#

#=> -(1/6 + 2/3)#

For this you need to find #LCM# of the denominators #(3,6).#

#"LCM of" 3 and 6 = 6#

Now continue with the equation using the #LCM.#

#=>-(1/6 + (2xx2)/(2xx3))#

#=> -(1/6 + 4/6)#

#=> -((1+4)/6)#

#=> -5/6#