How do you solve #root 3(3x-1)=2#?

2 Answers
Mar 9, 2018

The solution is #x=3#.

Explanation:

Cube both sides of the equals sign, then solve for #x#:

# root(3)(3x-1)=2 #

# (root(color(red)cancelcolor(black)3)(3x-1))^color(red)cancelcolor(black)3=2^3 #

# 3x-1=2^3 #

# 3x-1=8 #

# 3x=9 #

# x=3 #

Mar 9, 2018

#x=3#

Explanation:

#root(3)(3x-1)=2#
#(3x-1)=2^3#
#(3x-1)=8#
#3x=9#
#x=3#