How do you solve sqrt(x^2+8x-9)=xx2+8x9=x?

3 Answers
Mar 10, 2018

x=9/8x=98

Explanation:

sqrt(x^2+8x-9) = xx2+8x9=x

Squaring both sides,
x^2+8x-9 = x^2x2+8x9=x2

Subtracting x^2x2 from both sides,
8x-9=08x9=0
8x=98x=9
x=9/8x=98

Mar 10, 2018

x=9/8x=98

Explanation:

color(blue)"square both sides"square both sides

rArr(sqrt(x^2+8x-9))^2=x^2(x2+8x9)2=x2

rArrcancel(x^2)+8x-9=cancel(x^2)

rArr8x=9rArrx=9/8

color(blue)"As a check"

rArrsqrt((9/8)^2+8(9/8)-9)

=sqrt(81/64cancel(+9)cancel(-9))=9/8=" right side"

rArrx=9/8" is the solution"

Mar 10, 2018

x=9/8

Explanation:

We can square both sides of the equation.

sqrt(x^2+8x-9)=x

x^2+8x-9=x^2

8x-9=0

8x=9

x=9/8