How do you perform the operation and write the result in standard form given (2-3i)^2(23i)2?

2 Answers
Mar 26, 2018

-5-12i512i

Explanation:

color(orange)"Reminder "color(white)(x)i^2=(sqrt(-1))^2=-1Reminder xi2=(1)2=1

"note that "(2-3i)^2=(2-3i)(2-3i)note that (23i)2=(23i)(23i)

"expand factors using FOIL"expand factors using FOIL

=4-12i+9i^2=-5-12ilarrcolor(red)"in standard form"=412i+9i2=512iin standard form

Mar 26, 2018

-5-12i512i

Explanation:

First, multiply using the distributive property:

(2-3i)^{2} = (2-3i)(2-3i)(23i)2=(23i)(23i)

(2-3i)(2-3i) = 4 - 6i - 6i + 9i^{2}(23i)(23i)=46i6i+9i2

Then simplify;

4 - 6i - 6i + 9i^{2} = 4 - 12i + 9(-1)46i6i+9i2=412i+9(1)

4 - 12i + 9(-1) = 4 - 12i -9412i+9(1)=412i9

4 - 12i - 9 = -5-12i412i9=512i