How do you solve log3x+log3(x8)=2?

1 Answer
Mar 31, 2018

Thus, x=9 is the valid solution

Explanation:

log3x+log3(x8)=2

logm+logn=logmn

log3x+log3(x8)=log3x(x8)

log3x(x8)=2

x(x8)=32

x(x8)=9

x28x=9

x28x9=0

x29x+1x9=0

x(x9)+1(x9)=0

(x+1)(x9)=0

x=1,x=9

x=1,9

Here, x needs to be a positive number .

Thus, x=9 is the valid solution