How do you differentiate #f(x)=A/(B+Ce^x)#?

2 Answers
Apr 18, 2018

#f'(x)=-(ACe^x)/(B+Ce^x)^2#

Explanation:

If we want to differentiate with the Quotient Rule:

#f'(x)=((B+Ce^x)d/dxA-Ad/dx(B+Ce^x))/(B+Ce^x)^2#

#d/dxA=0#, the derivative of a constant is zero.

#d/dx(B+Ce^x)=Ce^x#

Thus,

#f'(x)=-(ACe^x)/(B+Ce^x)^2#

Apr 18, 2018

#f'(x)=-\frac{A*C*e^x}{(B+C*e^x)^2}#

Explanation:

Remember:
#(\frac{f(x)}{g(x)})^'=\frac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2}#
in this case #f(x)=A# the derivative of a constant is zero
and #g(x)=(B+C*e^x)#, it become:
#(\frac{A}{g(x)})^'=\frac{-Ag'(x)}{(g(x))^2}#
#(\frac{A}{g(x)})^'=\frac{-A(B+C*e^x)^'}{(B+C*e^x)^2}=#
#=\frac{-A*C*e^x}{(B+C*e^x)^2}#