How do you differentiate f(x)=A/(B+Ce^x)?

2 Answers
Apr 18, 2018

f'(x)=-(ACe^x)/(B+Ce^x)^2

Explanation:

If we want to differentiate with the Quotient Rule:

f'(x)=((B+Ce^x)d/dxA-Ad/dx(B+Ce^x))/(B+Ce^x)^2

d/dxA=0, the derivative of a constant is zero.

d/dx(B+Ce^x)=Ce^x

Thus,

f'(x)=-(ACe^x)/(B+Ce^x)^2

Apr 18, 2018

f'(x)=-\frac{A*C*e^x}{(B+C*e^x)^2}

Explanation:

Remember:
(\frac{f(x)}{g(x)})^'=\frac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2}
in this case f(x)=A the derivative of a constant is zero
and g(x)=(B+C*e^x), it become:
(\frac{A}{g(x)})^'=\frac{-Ag'(x)}{(g(x))^2}
(\frac{A}{g(x)})^'=\frac{-A(B+C*e^x)^'}{(B+C*e^x)^2}=
=\frac{-A*C*e^x}{(B+C*e^x)^2}