How do you differentiate the following parametric equation: x(t)=√t−2,y(t)=t2−2t3et?
1 Answer
Apr 21, 2018
First, differentiate each individual function as you have been all year.
using the chain rule,
x(t)=(t−2)12
⇒dxdt=12(t−2)−12⋅ddt(t−2)
⇒dxdt=12(t−2)−12⋅1
⇒dxdt=12√t−2
and, by the product rule,
y(t)=t2−2t3et
⇒dydt=2t−[(ddt2t3)et−2t3(ddtet)]
⇒dydt=2t−[6t2et−2t3et]
⇒dydt=2t(1−3tet+t2et)
if we want to know
dydx=dydtdxdt=2t(1−3tet+t2et)12√t−2=4t√t−2(1−3tet+t2et)