How do you differentiate the following parametric equation: x(t)=t2,y(t)=t22t3et?

1 Answer
Apr 21, 2018

First, differentiate each individual function as you have been all year.

using the chain rule,

x(t)=(t2)12

dxdt=12(t2)12ddt(t2)

dxdt=12(t2)121

dxdt=12t2

and, by the product rule,

y(t)=t22t3et

dydt=2t[(ddt2t3)et2t3(ddtet)]

dydt=2t[6t2et2t3et]

dydt=2t(13tet+t2et)

if we want to know dydx, we see that:

dydx=dydtdxdt=2t(13tet+t2et)12t2=4tt2(13tet+t2et)