How do you express sin^2 theta - tan theta +sintheta in terms of cos theta ?

1 Answer
Apr 24, 2018

1-cos^2 (theta) - (sqrt(1-cos^2(theta)))/cos(theta)+\sqrt(1-cos(theta))

Explanation:

Remember:
sin^2(theta)+cos^2(theta)=1
tan(theta)=sin(theta)/cos(theta)

sin^2 theta - tan theta +sin theta=

=1-cos^2 (theta) - sin(theta)/cos(theta)+\sqrt(1-cos(theta))=

=1-cos^2 (theta) - (sqrt(1-cos^2(theta)))/cos(theta)+\sqrt(1-cos(theta))