What is the surface area of the solid created by revolving f(x)=sqrt(x)f(x)=x for x in [1,2]x[1,2] around the x-axis?

1 Answer
May 11, 2018

pi/6[27-5sqrt5]π6[2755] units^22

Explanation:

The formula for surface area of revolution is, SA=2piint_a^bf[x]sqrt[1+[d/dxf[x]]^2dxSA=2πbaf[x]1+[ddxf[x]]2dx.

From the question, SASA=2piint_1^2sqrtxsqrt[1+[d/dxsqrtx]^22π21x1+[ddxx]2 [where f[x]f[x]=sqrtx]x].

Differentiating d/dxsqrtxddxx= 1/[2sqrtx12x and so[d/dx[sqrtx]]^2[ddx[x]]2=1/[4x14x

Therefore, SASA=2piint_1^2sqrtxsqrt[1+1/[4x]dx2π21x1+14xdx = 2piint_1^2sqrtxsqrt[[4x+1]/[4x]dx2π21x4x+14xdx.

That is, 2piint _1^2sqrtx/[2sqrtx]2π21x2xsqrt[4x+14x+1dx = piint_1^2sqrt[4x+1π214x+1dx..........[1][1]

Integrating ....[1][1] w.r.t. gives us SASA =, pi/6sqrt[[4x+1]^3]π6[4x+1]3 and when evaluted for x= 1, x=2x=1,x=2 will result inthe above answer when simplified.

Hope this helpful.